AtCoder Grand Contest 011

C - Squared Graph


Time limit時間制限 : 2sec / Memory limitメモリ制限 : 256MB

配点 : 800

問題文

高橋君は,N 頂点 1, 2, ..., N からなる無向グラフをもらいました. このグラフの辺は (u_i, v_i) で表されます. このグラフには,自己辺や多重辺は存在しません.

高橋君は,このグラフをもとに,N^2 頂点 (a, b) (1 \leq a \leq N, 1 \leq b \leq N) からなるグラフを作ることにしました. このグラフの辺は,次の規則で定まります.

  • 元のグラフにおいて aa' の間および bb' の間の両方に辺があるとき,またそのときに限り,(a, b)(a', b') の間に辺を張る.

このようにして作ったグラフの連結成分の個数を求めてください.

制約

  • 2 \leq N \leq 100,000
  • 0 \leq M \leq 200,000
  • 1 \leq u_i < v_i \leq N
  • u_i = u_j かつ v_i = v_j を満たすような異なる i, j の組は存在しない

入力

入力は以下の形式で標準入力から与えられる。

N M
u_1 v_1
u_2 v_2
:
u_M v_M

出力

高橋君の作ったグラフの連結成分の個数を出力せよ.


入力例 1

3 1
1 2

出力例 1

7

高橋君の作ったグラフは下のようになります.


入力例 2

7 5
1 2
3 4
3 5
4 5
2 6

出力例 2

18

Score : 800 points

Problem Statement

Takahashi has received an undirected graph with N vertices, numbered 1, 2, ..., N. The edges in this graph are represented by (u_i, v_i). There are no self-loops and multiple edges in this graph.

Based on this graph, Takahashi is now constructing a new graph with N^2 vertices, where each vertex is labeled with a pair of integers (a, b) (1 \leq a \leq N, 1 \leq b \leq N). The edges in this new graph are generated by the following rule:

  • Span an edge between vertices (a, b) and (a', b') if and only if both of the following two edges exist in the original graph: an edge between vertices a and a', and an edge between vertices b and b'.

How many connected components are there in this new graph?

Constraints

  • 2 \leq N \leq 100,000
  • 0 \leq M \leq 200,000
  • 1 \leq u_i < v_i \leq N
  • There exists no pair of distinct integers i and j such that u_i = u_j and v_i = v_j.

Input

The input is given from Standard Input in the following format:

N M
u_1 v_1
u_2 v_2
:
u_M v_M

Output

Print the number of the connected components in the graph constructed by Takahashi.


Sample Input 1

3 1
1 2

Sample Output 1

7

The graph constructed by Takahashi is as follows.


Sample Input 2

7 5
1 2
3 4
3 5
4 5
2 6

Sample Output 2

18

Submit提出する